Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36909519

RESUMO

Riboswitches are non-coding RNA elements that play vital roles in regulating gene expression. Their specific ligand-dependent structural reorganization facilitates their use as templates for design of engineered RNA switches for therapeutics, nanotechnology and synthetic biology. T-box riboswitches bind tRNAs to sense aminoacylation and control gene expression via transcription attenuation or translation inhibition. Here we determine the cryo-EM structure of the wild-type Mycobacterium smegmatis ileS T-box in complex with its cognate tRNA Ile . This structure shows a very flexible antisequestrator region that tolerates both 3'-OH and 2',3'-cyclic phosphate modification at the 3' end of tRNA Ile . Elongation of one helical turn (11-base pair) in both the tRNA acceptor arm and T-box Stem III maintains T-box-tRNA complex formation and increases the selectivity for tRNA 3' end modification. Moreover, elongation of Stem III results in ∼6-fold tighter binding to tRNA, which leads to increased sensitivity of downstream translational regulation indicated by precedent translation. Our results demonstrate that cryo-EM can guide RNA engineering to design improved riboswitch modules for translational regulation, and potentially a variety of additional functions.

2.
Mol Microbiol ; 112(4): 1199-1218, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31340077

RESUMO

Small RNA (sRNA) regulators promote efficient responses to stress, but the mechanisms for prioritizing target mRNA regulation remain poorly understood. This study examines mechanisms underlying hierarchical regulation by the sRNA SgrS, found in enteric bacteria and produced under conditions of metabolic stress. SgrS posttranscriptionally coordinates a nine-gene regulon to restore growth and homeostasis. An in vivo reporter system quantified SgrS-dependent regulation of target genes and established that SgrS exhibits a clear target preference. Regulation of some targets is efficient even at low SgrS levels, whereas higher SgrS concentrations are required to regulate other targets. In vivo and in vitro analyses revealed that RNA structure and the number and position of base pairing sites relative to the start of translation impact the efficiency of regulation of SgrS targets. The RNA chaperone Hfq uses distinct modes of binding to different SgrS mRNA targets, which differentially influences positive and negative regulation. The RNA degradosome plays a larger role in regulation of some SgrS targets compared to others. Collectively, our results suggest that sRNA selection of target mRNAs and regulatory hierarchy are influenced by several molecular features and that the combination of these features precisely tunes the efficiency of regulation of multi-target sRNA regulons.


Assuntos
Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Pareamento de Bases , Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica/genética , Sistema Fosfotransferase de Açúcar do Fosfoenolpiruvato/metabolismo , Biossíntese de Proteínas , RNA Bacteriano/metabolismo , RNA Mensageiro/metabolismo , Pequeno RNA não Traduzido/metabolismo , Regulon
3.
Proc Natl Acad Sci U S A ; 115(15): 3894-3899, 2018 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-29581302

RESUMO

T box riboswitches are RNA regulatory elements widely used by organisms in the phyla Firmicutes and Actinobacteria to regulate expression of amino acid-related genes. Expression of T box family genes is down-regulated by transcription attenuation or inhibition of translation initiation in response to increased charging of the cognate tRNA. Three direct contacts with tRNA have been described; however, one of these contacts is absent in a subclass of T box RNAs and the roles of several structural domains conserved in most T box RNAs are unknown. In this study, structural elements of a Mycobacterium smegmatis ileS T box riboswitch variant with an Ultrashort (US) Stem I were sequentially deleted, which resulted in a progressive decrease in binding affinity for the tRNAIle ligand. Selective 2'-hydroxyl acylation analyzed by primer extension (SHAPE) revealed structural changes in conserved riboswitch domains upon interaction with the tRNA ligand. Cross-linking and mutational analyses identified two interaction sites, one between the S-turn element in Stem II and the T arm of tRNAIle and the other between the Stem IIA/B pseudoknot and the D loop of tRNAIle These newly identified RNA contacts add information about tRNA recognition by the T box riboswitch and demonstrate a role for the S-turn and pseudoknot elements, which resemble structural elements that are common in many cellular RNAs.


Assuntos
Isoleucina-tRNA Ligase/genética , Mycobacterium smegmatis/genética , RNA Bacteriano/química , RNA de Transferência/química , Elementos Reguladores de Transcrição , Riboswitch , Regulação Bacteriana da Expressão Gênica , Isoleucina-tRNA Ligase/química , Isoleucina-tRNA Ligase/metabolismo , Modelos Moleculares , Mycobacterium smegmatis/química , Mycobacterium smegmatis/metabolismo , Conformação de Ácido Nucleico , RNA Bacteriano/genética , RNA Bacteriano/metabolismo , RNA de Transferência/genética , RNA de Transferência/metabolismo
4.
RNA ; 23(10): 1569-1581, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28739676

RESUMO

RNA thermometers regulate expression of some genes involved in virulence of pathogenic bacteria such as Yersinia, Neisseria, and Salmonella They often function through temperature-dependent conformational changes that alter accessibility of the ribosome-binding site. The 5'-untranslated region (UTR) of the htrA mRNA from Salmonella enterica contains a very short RNA thermometer. We have systematically characterized the structure and dynamics of this thermometer at single-nucleotide resolution using SHAPE (selective 2'-hydroxyl acylation analyzed by primer extension) assays. Our results confirm that the htrA thermometer adopts the predicted hairpin conformation at low temperatures, with conformational change occurring over a physiological temperature regime. Detailed SHAPE melting curves for individual nucleotides suggest that the thermometer unfolds in a cooperative fashion, with nucleotides from both upper and lower portions of the stem gaining flexibility at a common transition temperature. Intriguingly, analysis of an extended htrA 5' UTR sequence revealed not only the presence of the RNA thermometer, but also an additional, stable upstream structure. We generated and analyzed point mutants of the htrA thermometer, revealing elements that modulate its stability, allowing the hairpin to melt under the slightly elevated temperatures experienced during the infection of a warm-blooded host. This work sheds light on structure-function relationships in htrA and related thermometers, and it also illustrates the utility of SHAPE assays for detailed study of RNA thermometer systems.


Assuntos
RNA Bacteriano/química , Salmonella enterica/genética , Regiões 5' não Traduzidas , Proteínas de Bactérias/genética , Bioquímica/métodos , Mutação , Conformação de Ácido Nucleico , Estabilidade de RNA , RNA Bacteriano/metabolismo , RNA Mensageiro/química , RNA Mensageiro/metabolismo , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...